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Abstract 
 
Da Costa, Lombardi and Lastiri (2013) have proposed an ontology of  properties 
for non-relativistic quantum mechanics within the structure of  the modal-
Hamiltonian interpretation of  the theory. Recently, this proposal has been devel-
oped in order to discuss the nature of  entanglement and indistinguishability in 
such an ontology (Fortin and Lombardi 2022) and to explain how particles 
emerge from an ontology of  properties (Lombardi and Dieks 2016). Oldofredi 
(2021) has also proposed an ontology of  properties for Relational Quantum Me-
chanics. The aim of  my paper is then to discuss an ontology of  properties in the 
context of  Quantum Field Theory (QFT). Wayne (2008) and Kuhlmann (2010) 
have already tried to define an ontology of  properties for QFT in terms of  tropes. 
However, I will try to follow a different approach. On the one hand, I will give a 
more general framework, which does not necessarily entail an ontology of  tropes. 
I will in fact follow the path originally suggested by Da Costa, Lombardi and 
Lastiri, which is more general and formal. I will also briefly discuss how such an 
approach can be represented in an algebraic formalism. On the other hand, I will 
show how such an ontology of  properties provides a good interpretation and rep-
resentation of  the measurement models that we can define in the context of  QFT 
(by following the recent discussion of  the measurement problem in QFT given by 
Grimmer 2022), and then of  the experimental results. 
 
Keywords: Ontology, Properties, Particles, Quantum theories, Superselection for-

malism. 
 
 
 
 

1. Introduction 

The aim of this paper is to discuss a possible ontology of properties for quantum 
theories (QTs). The idea was originally formulated by Da Costa, Lombardi and 
Lastiri (2013) and has been quite ignored until recent years, when the original 
proposal has been developed and eventually generalized in order to cover other 
aspects of  QTs, which were not properly analyzed in the original paper (see, for 
example, Holik, Jorge, Krause and Lombardi 2021 and Fortin and Lombardi 
2022). Moreover, several scholars have recently considered different proposals of  
bundle theories as possible interpretations of QTs. In particular, Oldofredi (2021) 
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has proposed a mereological bundle-theoretic interpretation of Rovelli’s Relation-
al Quantum Mechanics (see Rovelli 1996 for the original formulation of  Rela-
tional Quantum Mechanics). I do not want to enter in that debate in this paper, 
but I consider such a proposal as a good example of how an ontology of proper-
ties for QTs is still interesting and worth discussing. 

Da Costa, Lombardi and Lastiri (2013) propose an ontology of  properties 
in the context of  the modal interpretation of  Quantum Mechanics (QM). In par-
ticular, such an ontology has been suggested for the modal-Hamiltonian formu-
lation of  QM, which has been formulated by Lombardi and Castagnino (2008) 
and which is a specific form of  modal interpretation of  QM that rests on the 
primary role that Hamiltonian formalism plays in the theory (I will come back 
to this point later in the paper). Yet, I think that Da Costa, Lombardi and 
Lastiri’s proposal is interesting even if  we do accept neither the modal interpre-
tation of  QM nor the specific modal-Hamiltonian interpretation, on which they 
ground their ontology of  properties. Moreover, I think that Da Costa, Lombardi 
and Lastiri’s proposal can be relevant also in the context of  Quantum Field 
Theory (QFT), and of  its algebraic formulation. 

The search for an ontology in QFT has been one of  the main problems for 
this theory. The main alternatives in the literature are, on the one hand, a parti-
cle ontology, where the fundamental ontological posits of  the theory are parti-
cles. However, a series of  results and no-go theorems seem to rule out such an 
ontology. The notion of  particle should be in fact characterized by two funda-
mental features, that is, a particle should be a countable and localizable entity. 
However, the countability requirement is undermined by Haag’s theorem and 
the Reeh-Schlieder theorem, which respectively prove that a unique total num-
ber operator for both free and interacting quantum field systems is not definable, 
and that a local number operator is also not definable either, if  we take into ac-
count the mathematical structure of  the theory (see Earman and Fraser 2006). 
Second, Malament’s theorem proves that it is not possible to sharply localize 
particles in any bounded region of  space-time; and hence also the localizability 
requirement does not seem to be satisfied (see Malament 1996). On the other 
hand, the natural alternative is an ontology of  fields, but it turns out to be un-
workable too. Baker (2009) shows that the Fock space formalism and the wave-
functional formalism are unitarily equivalent. This would mean that the prob-
lems of  the particle interpretation—which is represented via the Fock space 
formalism—might be shared also by the field interpretation—which is repre-
sented by the wavefunctional formalism. In any case, one can try to resist these 
no-go theorems and arguments and try to provide a weaker notion of  particle 
and of  field that might avoid the problems above mentioned. For example, 
Fleming and Bennett (1989) and Fleming and Butterfield (1999) assume a no-
tion of  localization for particles that is relative to a hyperplane of  simultaneity 
and, hence, immune to Malament’s theorem—at the cost of  losing the full rela-
tivistic invariance of  the theory. However, these attempts to save a particle or a 
field interpretation of  QFT do not seem eventually compelling.1 There are also 

 
1 See also Fraser 2008 and 2017 and Rossanese 2021 for what concerns the notion of  par-
ticle and the possible particle interpretation of  QFT. See also Kuhlmann 2012 for what 
concerns the notion of  field (and the possible field interpretation of  QFT) and for a gen-
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other possible ontologies for QFT, but each of  them faces some problems once 
the formalism of  the theory is considered. I will not enter in that debate here, 
but the interested reader can look at Kuhlmann, Lyre and Wayne 2002, where 
different ontologies for QFT are proposed and discussed (see also Kulmann 
2012 for a complete presentation of  the philosophical problems of  QFT and for 
some references to how such a debate on the ontology of  QFT has developed). 

In any case, I think that Da Costa, Lombardi and Lastiri’s original proposal 
can be properly generalized in order to be applied also to QFT. An ontology of  
properties has been already suggested for QFT, but I believe that Da Costa, 
Lombardi and Lastiri’s ontology is, in a sense, more general and has less meta-
physical costs. In fact, Wayne (2008) and Kuhlmann (2010) propose an ontology 
of  particularized properties, that is, of  tropes in order to interpret QFT. Howev-
er, such proposals face some problems that undermine their validity (see Ros-
sanese 2013). Da Costa, Lombardi and Lastiri’s ontology of  property is, there-
fore, a good candidate to provide an ontology of  QFT or, at least, is worth dis-
cussing in the context of  this theory. There is surely more work to do in order to 
have a full and compelling ontology of  properties for QFT, but this paper aims 
to pose the first brick. 

The paper is then structured as follows. The second section will present and 
discuss Da Costa, Lombardi and Lastiri (2013)’s original proposal. The third 
section will try to generalize their proposal to the formal context of  QFT (and in 
particular to the algebraic reformulation of  the theory). Finally, in a fourth and 
conclusive section, I will provide some comments and a possible “to do list” for 
the future work toward a proper ontology of  properties for QFT. 

 
2. An Ontology of  Properties for Quantum Mechanics 

Da costa, Lombardi and Lastiri (2013) adopt a modal interpretation of  QM and 
then provide their ontology of  properties within that interpretation. First of  all, 
we therefore need to have a look at what this interpretation assumes and, in par-
ticular, to the specific modal-Hamiltonian interpretation, which has been formu-
lated by Lombardi and Castagnino (2008). 

There is not a unique modal interpretation of  QM, but rather there are sev-
eral possible modal interpretations of  this theory; each of  them, however, share 
the same fundamental posit: “the state delimits what can and cannot occur, and 
how likely it is—it delimits possibility, impossibility, and probability of  occur-
rence—but does not say what actually occurs” (van Fraassen 1991: 279). Then, 
the fundamental idea at the basis of  the modal interpretation is to consider that 
quantum states prescribe only the possibility for a quantum event (that is, a 
measurement) to occur. Moreover, as Da Costa, Lombardi and Lastiri (2013: 
3673) recognize, all modal interpretations share some specific features: (i) they 
assume the standard formulation of  QM, (ii) they are realist interpretations of  
QM, (iii) as mentioned, the quantum state describes possible properties and 
their corresponding probabilities, which evolve according to the Schroedinger 
equation, (iv) a quantum measurement is a physical process, and finally (v) the 
quantum state describes a single system. 

 
eral discussion of  different possible answers to the no-go theorems presented in this sec-
tion. 
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The aspect that is different in each modal interpretation is the specific rule 
of  actual-value ascription. Each modal interpretation has, in fact, its own rule to 
ascribe actual values to the possible properties that are described to the quantum 
state. The ascription of  actual-valued properties depends on the choice of  the 
preferred context, which defines “the set of  the observables that acquire an ac-
tual value without violating the restrictions imposed by the contextuality of  
quantum mechanics (Kochen and Specker 1967)” (Da Costa, Lombardi and 
Lastiri 2013: 3673). 

Da Costa, Lombardi and Lastiri then adopt the specific modal-Hamiltonian 
interpretation of  QM, which ascribes a fundamental role to the Hamiltonian of  
the quantum system. According to Lombardi and Castagnino (2008), in fact, the 
Hamiltonian of  the quantum system plays a central role in the definition of  
what a quantum system is (and consequently what a quantum subsystem is). 
Moreover, it is also important in the choice of  the preferred context, and then to 
the definition of  a specific rule of  actual-value ascription. It is then possible to 
define both a quantum system and a composite quantum system as follows (Da 
Costa, Lombardi and Lastiri 2013: 3673-374; see also the original formulation 
of  Lombardi and Castagnino 2008).2 

Systems postulate: A quantum system S is represented by a pair (O, H)such 
that (i) O is a space of  self-adjoint operators on a Hilbert space H, repre-
senting the observables of  the system, (ii) H ∈ O is the time independent 
Hamiltonian of  the system S, and (iii) if  ρ0 ∈ O' (where O' is the dual space 
of  O) is the initial state of  S, it evolves according to the Schrodinger equa-
tion in its von Neumann version. 

Composite systems postulate: A quantum system represented by S: (O, H), 
with initial state ρ0 ∈ O', is composite when it can be partitioned into two 
quantum systems S1: (O1, H1) and S2: (O2, H2) such that (i) O = O1 ⊗ O2, and 
(ii) H = H1 ⊗ I 2 + I 1 ⊗ H2, (where I 1 and I 2 are the identity operators in 
the corresponding tensor product spaces). In this case, the initial states of  
S1 and S2 are obtained as the partial traces ρ0

1 = Tr(2) ρ0 and ρ0
2 = Tr(1) ρ0; we 

say that S1 and S2 are subsystems of  the composite system, S = S1 ∪ S2. If  the 
system is not composite, it is elemental. 

So far, we have defined the quantum system and the composite quantum 
system in terms of  the Hamiltonian formulation of  QM. As said, quantum 
states identify the possible properties of  a quantum system. Then, in order to 
have actual-valued properties, we have also to define an actualization rule that 
helps us to identify a preferred context. 

 
2 It is important to note that Lombardi and Castagnino (2008) adopt an algebraic formu-
lation of  QM and this will be important when I will discuss the generalization of  Da 
Costa, Lombardi and Lastiri (2013)’s ontology of  properties to QFT, and in particular to 
its algebraic formulation. It is also worth mentioning that the algebraic perspective might 
be considered as the formal representation of  the logical priority of  properties over ob-
jects (as particles and fields), since in an algebraic formulation of  QTs, the observables 
are the fundamental entities, while states are secondary, namely functionals over the al-
gebra of  observables. I will discuss this point in the third section of  the paper. 
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Actualization rule: Given an elemental quantum system represented by S: 
(O, H), the actual-valued observables of  S are H and all the observables 
commuting with H and having, at least, the same symmetries as H. 

This actualization rule forbids to assign actual values to all those observa-
bles that possess fewer symmetries than the Hamiltonian, and therefore gives us 
a preferred context in terms of  the symmetries of  the Hamiltonian. As we shall 
see, the identification of  such symmetries is extremely important and plays a 
fundamental role also in the possible generalization of  this proposal to QFT. In 
any case, this is the modal-Hamiltonian interpretation of  QM in a very brief  
and sketchy presentation. 

Da Costa, Lombardi and Lastiri consider this interpretation as the basis for 
their ontology of  properties for QM and define three types of  properties, as the 
fundamental elements of  their ontology. 

First of  all, there are type-properties, which can be considered as universal 
properties. In the specific context of  QM, type-properties are the observables or 
a set of  observables and are mathematically represented by self-adjoint operators 
or a set of  self-adjoint operators. Type-properties, then, represent possible prop-
erties of  a quantum system such as the possibility of  having a definite energy. 

Second, there are case-properties, which are instances of  type-properties. 
In a more detail, case-properties are the possible values of  the observables and 
are mathematically represented by the eigenvalues of  the self-adjoint operators. 
For example, if  the type-property of  a certain quantum system is energy, the rel-
ative case-property is the possible energy of  “this” quantum system describing a 
free electron. That is, the energy of  a free electron is an instance of  a more gen-
eral property such as the energy, and the case-property represents the possible 
values that such instance can take if  a measurement is made. 

Finally, there are the actualized case-properties, which are the actual val-
ues that we collect after a measurement of  certain specific observables.3  

Da Costa, Lombardi and Lastiri’s proposal is then a three-fold ontology of  
properties for QM, which is grounded in the modal-Hamiltonian interpretation 
of  the theory. However, as mentioned, any modal interpretation needs an actual-
ization rule in order to specify the preferred context and give us the list of  all the 
observables that can have actual values. In the case of  the modal-Hamiltonian 
interpretation, such preferred context depends on the symmetries of  the Hamil-
tonian itself. Then, the next step is to identify which are the relevant symmetries 
and which are the relevant type-properties and observables that we should con-
sider. 

Da Costa, Lombardi and Lastiri assume that the space-time is Galilean 
(that is, space is considered as homogeneous and isotropic and time is consid-
ered as homogeneous) and then that quantum systems are invariant under the 
Galilean group of  transformations. The structure of  the group of  transfor-
mations helps us to identify which are the fundamental type-properties that can 
take actual values, and that can be then considered in our ontology (all the other 
(non-fundamental) type-properties can be derived from these fundamental type-
properties). In fact, it is possible to consider as fundamental type-properties all 
 
3 It is important to notice that in such an interpretation, a measurement is just a physical 
process regarding an interaction between two physical systems, with no difference with 
other kinds of  interactions. 
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those properties that are represented by the Casimir operators of  the Galilean 
group of  transformations. For, Casimir operators are the generators of  the group 
that commute with all the generators of  the group and are then invariant under 
all the transformations of  the group. Such fundamental type-properties are mass 
(M), internal energy (W) and squared spin (S2).4 

This allows Da Costa, Lombardi and Lastiri to refine their actualization 
rule in the following terms: 

 
[Actualization rule]': The only instances of  universal type-properties that actu-
alize are the instances [Mi] of  the mass [M], [Wi] of  the internal energy [W], [S2i] 
of  the squared spin [S2], and the instances of  the universal type-properties that, in 
each case, are represented by operators obtained as functions of  the Casimir op-
erators of  the Galilean group (Da Costa, Lombardi and Lastiri 2013: 3679). 
 

We finally have all the elements that constitute Da Costa, Lombardi and 
Lastiri (2013)’s ontology of  properties for QM. We can therefore define the no-
tion of  a bundle as a collection of  instances of  type-properties (and consider that 
only the instances selected by the preferred context can actualize). A couple of  
brief  considerations are in order before we can proceed. First, the notion of  
bundle is correlated with the physical notion of  a “system”, and thus helps us to 
take into account the possible composite nature of  a physical system. Second, 
since the actualization rule depends on the specification of  a preferred context, 
and given the phenomenon of  quantum indeterminacy, it is important to notice 
that this is the reason why it is better to characterize the bundle by means of  
type-properties, rather than of  actualized case-properties.5 

Atomic bundles are then defined in terms of  the irreducible representations 
of  the Galilean group, where the Casimir operators are multiple of  the identity, 
namely M = mI; W = wI; S2 = s(s+1)I. 

A bundle is atomic if  it has the following features: 

(1) It has no more than one instance of  each type-property; 
(2) Instances of  M, W and S2 belong to it; 

 
4 It is important to note that, to be more precise, M, W, and S2 are the generators of  the 
Bargmann group, which is the central extension of  the Galilean group. It is also im-
portant to notice that these properties might have a different role in different formulation 
of  the theory. In fact, it is possible to consider mass (M) as a non-dynamical parameter of  
the theory, while the internal energy (W) and squared spin (S2) can be considered as dy-
namical observables. I would like to thank an anonymous referee for having stressed 
these two points. However, I think that in my proposal it is sufficient to identify those 
properties with the fundamental properties of  the system, which are indeed invariant to 
the symmetry group transformations—and the technical aspects mentioned in this foot-
note do not seem to undermine that possibility. In any case, see Ardenghi, Castagnino 
and Lombardi 2009a and 2009b for a detailed discussion of  the role of  Casimir operators 
in the context of  the Galilean group of  transformations and of  their role in the modal in-
terpretation of  QM. 
5 This is also an argument in favor of  the preferability of  such an ontology of  (universal) 
properties, rather than of  an ontology of  tropes (such as Wayne 2008’s and Kuhlmann 
2010’s), which, in a sense, can be considered as the actualized case-properties of  Da Cos-
ta, Lombardi and Lastiri’s proposal. See also Rossanese 2013 for a specific evaluation of  
a trope ontology for QFT. 
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(3) It is represented by observables, which are in turn represented by opera-
tors that are multiple of  the identity. 

For example, according to this ontological framework, an elementary par-
ticle is represented by the triplet (m, w, s). However, it is important to note that, 
in such an ontology of  properties, particles are only emergent entities, while the 
fundamental ontological posits of  the theory are the fundamental type-
properties that belong to the bundle, which in turn represents the so-called “par-
ticle system” (see, for example, Dieks and Lubberdink 2011 and Lombardi and 
Dieks 2016 to have an idea of  how it is possible to recover the notion of  particle 
from an ontology of  properties).6 

To sum up this section, states encode the measure of  the propensity to ac-
tualization for all the case-properties, which are all the instances of  type-
properties, which belong to the bundle. Moreover, in the specific formalism of  
the Modal-Hamiltonian interpretation of  QM, states are then represented by 
expectation-value functionals over the algebra of  observables, as we have briefly 
mentioned in footnote 2. Then, the fundamental entities are the observables, 
which represent type-properties, while states are secondary entities. As we shall 
see, this point will be important for the possible generalization of  this proposal 
to QFT, and to its algebraic reformulation in particular. 
 

3. An Ontology of  Properties for Quantum Field Theory 

So far so good for what concerns QM, but then the interesting challenge is to 
test the validity of  Da Costa, Lombardi and Lastiri’s proposal also in the context 
of  QFT. I think that we have two options on the table, which are not actually 
separated. On the one hand, we can consider the original proposal and see 
which elements need to be substituted in order to grasp the physical content of  
QFT. On the other hand, we can consider the specific formalism of  the Algebra-
ic Quantum Field Theory (AQFT) and search for the formal structures that we 
need to represent our three-fold ontology of  properties. 

Starting from the original proposal, I think that it is possible to preserve the 
structure of  Da Costa, Lombardi and Lastiri (2013)’s ontology of  properties. 
Surely, it is possible to maintain three different types of  properties, since their 
definition can hold also in the formal context of  QFT. It is also possible to main-
tain the basic structure of  Lombardi and Castagnino (2008)’s modal-
Hamiltonian interpretation of  QM. We must, however, consider the Poincaré 
group of  transformations, rather than the Galilean group; and search for the 
Casimir operators of  the Poincaré group (and of  the relevant gauge group as 
well). In fact, the quantum systems described by QFT are not invariant under 
the Galilean group, since QFT assumes a Minkowski space-time. Then, we have 
to study the structure of  the Poincaré group and of  its representations. Moreo-
ver, we also need to consider gauge symmetries, which have a fundamental role 
in the description of  quantum states in QFT.  

 
6 As we shall see, this ontological framework can be “easily” extended in the context of  
relativistic quantum theories as QFT. There is, however, a fundamental difference that 
concerns the symmetry group that has to be considered. In the non-relativistic case, in 
fact, we consider the Galilean group, while in the relativistic case we need to consider the 
Poincaré group. 
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Ardenghi, Castagnino and Lombardi (2009b) discuss the case of  a QFT 
with U(1) gauge fields, such as Quantum Electro Dynamics (QED). In particu-
lar, they study the representations of  Poincaré group and find the relevant Cas-
imir operators for mass and spin. They also proved that it is possible to recover 
the Galilean group and its Casimir operators in the limit, via a (generalized) 
Inonu-Wigner contraction.7 Of  course, this analysis is, in a sense, in the same 
spirit of  Wigner’s analysis (1939), who proves that an elementary particle, that 
is, a fundamental particle, can be understood as an irreducible representation of  
the Poincaré Group. However, it is important to notice that here the notion of  
fundamentality cannot be ascribed to particles, but rather to the fundamental 
type-properties that are identified thanks to the study of  the observables and of  
the Casimir operators of  the relevant group of  transformations. Then, from a 
technical point of  view, such analyses are similar, but I think that they differ 
from a philosophical and interpretational perspective. 

In any case, at this point, we have only considered the space-time symme-
tries, but we have already said that internal gauge symmetries play a fundamen-
tal role in the structure of  QFT. With respect to this aspect of  the theory, Ar-
denghi, Castagnino and Lombardi discuss the case of  the Abelian Lie group 
U(1) in the context of  QED, and show that the Casimir operator C U

1 = Q of  this 
group is an actual-valued observable of  the U(1) gauge quantum fields. In par-
ticular, the operator Q of  the internal gauge group U(1) is the charge operator Q 
= eI.8 This means that it at least is possible to generalize Da Costa, Lombardi 
and Lastiri’s proposal in the context of  QFT, by maintaining the Lombardi and 
Castagnino (2008)’s formalism and change the relevant group of  symmetries of  
the Hamiltonian in order to be consistent with the symmetry structure of  QFT. 

As mentioned, another important feature of  Lombardi and Castagnino 
(2008)’s framework is that it takes at its basis the algebraic formulation of  QM. I 

 
7 It is important to note here that it is true that the Inonu-Wigner contraction allows to 
recover the Galilean group from the Poincaré group. However, as said in a previous foot-
note, we are interested in the central extension of  the Galilean group, namely the Barg-
mann group. In order to recover the Bargmann group, therefore, the fundamental idea is 
to consider the central extension of  the Poincaré group and then apply the Inonu-Wigner 
contraction. Yet, the Poincaré group does not have non-trivial central extensions. For this 
reason, one has to apply a generalized limiting procedure—that is, a generalized Inonu-
Wigner contraction—in order to recover the central extension of  the Galilean group from 
a trivial central extension of  the Poincaré group. I would like to thank again an anony-
mous referee for helping me to be more precise on these technical aspects. See Ardenghi, 
Castagnino and Lombardi 2009b, and in particular their 5.2. section, for the definitions 
of  two interesting limiting procedures and for the detailed demonstration of  the possibil-
ity to recover the central extension of  the Galilean group and its Casimir operators in the 
limit. 
8 In the context of  QED, we need a representation of  electric charge and this is possible 
thanks to the charge operator Q. In order to apply our framework to QED, we then need 
to find the Casimir operator that is associated with Q, which would assure us that this ob-
servable is invariant under the group transformations and, hence, can be considered as a 
fundamental property of  the theory. Such a Casimir operator exists and it is represented 
by C U1. See again Ardenghi, Castagnino and Lombardi 2009b for a detailed discussion of  
the role of  Casimir operators in gauge theories. 
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think, then, we can learn something by the study of  the algebraic formulation of  
QFT.9 

The main important aspect of  AQFT is to focus on the structure of  the al-
gebras of  observables rather than to the observables themselves. The fundamen-
tal idea of  AQFT is to define a net of  C*-algebra10 O → A(O) that associates a 
C*-algebra A(O) to every open bounded region of  Minkowski space-time O. A 
local algebra A(O) represents what is localized and then observables in the re-
gion O. The physical content of  AQFT is then encoded in the so-called net of  
local algebras, that is, the mapping O → A(O) from regions O of  Minkowski 
space-time to algebras of  local observables A(O).11 

According to the Haag-Kastler formulation of  the theory, the net of  local 
algebras has to satisfy four axioms, which impose important physical conditions 
on the abstract C*-algebra A(O):12 

(1) Isotony: the mapping O → A(O) is an inductive system. This means that 
an observable measurable in the region of  space-time O1 is a fortiori 
measurable also in a region of  space-time O2 containing O1. 

(2) Microcausality: if  O1 and O2 are space-like separated space-time regions, 
then [A(O1), A(O2)] = {0}. That is, all observables connected with a space-
time region O1 are required to commute with all observables of  another 
algebra which is associated with a space-like separated space-time region 
O2. This axiom is also called Einstein causality. 

(3) Translation covariance: if  A is a net of  local algebras of  observables on an 
affine space, it is assumed that there exists a faithful and continuous rep-
resentation x → αx of  the translation group in the group AutA of  auto-
morphisms of  A and αx(A(O)) = A(O + x), for any space-time region O 
and translation x. 

(4) Spectrum condition: the support of  the spectral measure of  the operator 
associated with a translation is contained in the closed forward light-
cone, for all translations. This ensures that negative energies cannot oc-
cur.  

It is also important to define a couple of  other notions that will be helpful 
to understand some ideas that will be discussed in the rest of  the paper. First of  
all, we must define the notion of  representation as a map that associates every 
element of  an abstract C*-algebra A(O) with the set of  all bounded operators act-

 
9 Since it is not possible to give a complete account of  AQFT, I will give only a brief  and 
sketchy presentation. The interested reader can see Halvorson and Mueger 2007 for a 
very technical and mathematical presentation, or Ruetsche 2012 for a bit more philo-
sophical oriented analysis of  the theory. 
10 According to a very general definition, a C*-algebra A is a complex algebra of  continu-
ous (bounded) linear operators defined on a complex Hilbert space, with the following 
important properties:  

(i)  A is (topologically) closed in the norm topology of  operators; 
(ii) A is closed under the operation of  taking adjoints of  operators. 

11 To complete our basic introduction to the structure of  AQFT, we should specify that (i) 
local observables are defined as self-adjoint elements in local (non-commutative) alge-
bras; and (ii) the state of  a physical system is defined as a positive, linear and normalized 
function that associates elements of  the local algebra of  observables to real numbers. 
12 Here I follow the definition of  the axioms as given by Rossanese (2016: 321). 
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ing on a Hilbert space H. A representation is said to be irreducible if  the represen-
tation space H has no closed invariant subspaces. The notion of  irreducibility is 
important because an irreducible representation is usually considered to repre-
sent an elementary system, which—ontologically speaking—is considered as fun-
damental. However, if  we analyze the algebraic structure of  AQFT, we realize 
that there are several possible (unitarily) inequivalent irreducible representations 
of  the same algebra of  observables generated by the canonical commutation re-
lations (CCRs) for the field operators. Now, the Stone-von Neumann theorem 
proves that the algebra generated by the CCRs for the position and momentum 
operators has a representation in Hilbert space up to unitary equivalence. How-
ever, the Stone-von Neumann theorem is proved only for systems with a finite 
number of  degrees of  freedom. Since AQFT is a theory that describe physical 
systems with an infinite number of  degrees of  freedom, the Stone-von Neumann 
theorem does not hold in the context of  AQFT. As we shall see, it is possible to 
“solve” this problem thanks to the superselection formalism. 

We need also to define the notion of  the Gelfand-Naimark-Segal-
representation, that is, the GNS representation: “Let ω be a state on a C*-
algebra A. Then there exists a Hilbert space Hω, a representation πω : A → B(Hω) 
of  the algebra of  observables, and a cyclic vector |ξω> ∈ Hω, such that for all A 
∈ A, the expectation values that the state ω assigns to the algebraic operator A is 
duplicated by the expectation value that the vector |ξω> assigns to the Hilbert 
space operator π(A). The triple (Hω, πω, |ξω>) is a cyclic representation because it 
contains a cyclic vector and it is called GNS-representation. It is unique up to 
unitarily equivalence. That is, if  (H, π) is a representation of  A containing a cy-
clic vector |ψ> such that ω (A) = <ψ| A |ψ>, then (H, π) and (Hω, πω) are uni-
tarily equivalent. A state ω on a C*- algebra A is pure if  and only if  its GNS-
representation is irreducible; if  its GNS-representation is reducible, the state is a 
mixed state”.13 

As said, the observables and their algebraic structure are at the center of  
this formalism, and hence AQFT can be interpreted thanks to the framework 
that we have described in the previous part of  this paper. However, as men-
tioned, we have to deal with the problem of  several different inequivalent irre-
ducible representations of  the algebras of  observables in AQFT. In fact, if  we 
need to identify the fundamental type-properties, we need to have a definite rep-
resentation of  the algebras of  observables, or at least a definite representation for 
each quantum system described by AQFT.  

The superselection formalism was originally proposed as a restriction on 
the nature and the scope of  possible measurements. In the context of  AQFT, a 
superselection rule is provided by Doplicher, Haag and Roberts (DHR) (1971 
and 1974), who impose a superselection criterion according to which all the ex-
pectation values of  all observables should uniformly approach the vacuum ex-
pectation values when the measurement region is far from the origin. Such a cri-
terion allows DHR to find equivalent classes of  irreducible inequivalent repre-
sentations corresponding to charge superselection sectors. Thanks to the DHR 
analysis, it is then possible to consider as physical only the irreducible represen-
tations that are superselected by the DHR criterion. In other terms, the physical 
representations are the superselection sectors that can be reached from the vacu-
 
13 Here I use the definition of  the GNS-representation as given in Rossanese 2016: 322. 
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um sector through the action of  local (unobservable) fields. If  the space has the 
dimension of  Minkowski space-time (or higher), those charge quantum numbers 
stand in a one to one correspondence to the labels attached to the irreducible in-
equivalent representations of  the global gauge group. This means that it is possi-
ble to connect the algebraic structure to the symmetry structure of  the theory. It 
is also possible to define a composition of  charges in terms of  a tensor product 
of  those group representations, a conjugation of  charges corresponding to the 
complex conjugate representations and a sign that is attached to each kind of  
charge, determining then if  the system is fermionic or bosonic and the relevant 
statistics. In fact, quantum statistics arises from the structure of  the category of  
representations of  the observable algebra, which in particular is characterized by 
the fact that any GNS-representation is isomorphic to the category of  localized 
transportable morphisms. 

To sum up, DHR show that it is possible to recover all the properties of  
quantum fields from the analysis of  superselection sectors. In particular, as al-
ready mentioned, they are able to recover the following physical structures: (i) 
properties of  quantum number (baryon number, lepton number, and the magni-
tude of  generalized isospin); (ii) composition law and conjugation of  charge; 
(iii) exchange symmetry of  identical charges—that is, statistics for quantum sys-
tems. 

However, the DHR criterion cannot account for physical states with electric 
charge.14 For this reason, Buchholz and Fredenhagen (BF) (1982) propose a dif-
ferent criterion in which the space-time region is replaced by an infinitely ex-
tended cone around some arbitrarily chosen space-like direction—and they then 
introduce the notion of  topological charge. The fundamental idea is to consider 
almost local algebras and almost local operators in order to have an account of  
non-localizable charges. An almost local algebra is the set of  all the elements 
which can be approximated by local observables in a diamond of  radius r with 
an error decreasing in norm faster than any inverse power of  r. It is important to 
notice that, in a theory formulated on a Minkowski space-time (such as AQFT), 
the results of  the BF analysis are equivalent to those of  the DHR analysis that 
we have briefly described above. 

What is the moral of  this quite technical part? I think that it is possible to 
accept Da Costa, Lombardi and Lastiri’s ontology of  properties also in the con-
text of  AQFT. In order to identify the type-properties that compose the bundle 
which represents a quantum system, we need to make three further steps with 
respect to their original proposal. First, we need to consider a different group of  
symmetry, namely the Poincaré group. Second, we need to take into account al-
so a new kind of  symmetry, namely the internal gauge symmetry. Finally, we 
have to deal with the inequivalent irreducible representations of  the algebra of  
observables with the help of  the superselection formalism. In particular, the in-
ternal symmetry considered in the analysis of  the superselection formalism 
should always be represented by gauge symmetries. Quantum numbers manifest 
themselves with the existence of  superselection rules for the states over the alge-

 
14 This problem concerns the Gauss’s law and to the fact that electric charge spreads 
space-like at infinity due to Coulomb’s law. This means that electric charge cannot be 
properly represented by a localized operator such as those required in the definition of  
the DHR criterion. 
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bra of  observables. The net structure of  charge quantum numbers serves then to 
distinguish different species of  physical systems and characterize their proper-
ties. 

Now, the superselection formalism allows us to (super-)select all those rep-
resentations of  the algebras of  observables that have a physical meaning. It then 
allows us to identify all the relevant observables and therefore all the type-
properties of  quantum systems. As in the context of  the algebraic reformulation 
of  QM, we can define states ρ as functionals over the algebras of  observables in 
the following way: ρ(A) = Tr <Aρ> = <A>ρ ∈ R, for all A ∈ A. Da Costa, Lom-
bardi and Lastiri (2013)’s proposal can be then generalized to the specific for-
malism of  AQFT. 

In the context of  AQFT, it is therefore possible to identify all the relevant 
type-properties of  a quantum system thanks to the algebraic structure of  the 
theory and, in particular, thanks to the superselection formalism. Case-
properties are then identified when one specific superselection sector is defined, 
that is, when we apply certain further conditions to the algebraic structure repre-
senting the quantum system in order to shift from a universal kind of charge to the 
specific charge of that kind we are interested in. Finally, we can have actualized 
case-properties when a measurement of  that specific charge is performed—but, 
as we shall see, we first need a clear definition of  what a measurement is in the 
context of  AQFT. 

It is also possible to recover the notion of  particle. For example, Enss (1975) 
proposes an algebraic framework in order to give a definition of  particles in 
terms of  their local properties. As said, according to a first intuitive definition, a 
particle system is a stable physical system that cannot be decomposed into sub-
systems. Here “stable” means that the irreducibility of  the system is conserved 
through any dynamical evolution. If  we consider a particle as a collection of  lo-
cal observables, we have that the components of  the one-particle system, as its 
properties (i.e., the observables), must “remain close” to each other. Moreover, 
as said, a particle should be localized (and in principle localizable) in a small re-
gion of  space-time. In this sense, then, a particle could be understood as the 
neighborhood of  a space-time point, that is, the localization point of  a certain 
set of  local observables. To put it in other terms, the notion of  particle is defined 
by the set of  particle states localized within a small region of  space-time. How-
ever, there is a quantum phenomenon, the so-called spreading, that shows that 
the region where a particle is localizable increases with time. This entails also 
that it is impossible to use the notion of  localization in order to distinguish one 
particle state from another, just because their respective localization regions can 
overlap after a certain time t. In order to solve this problem, Enss introduces a 
different notion of  localization: a state can be “singly localized at time t with 
correlation-radius r”. As such, a particle state “can be constructed by superposi-
tion of  state-vectors which are localized at time t in various region of  radius r” 
(Enss 1975: 36). There is also an operative way of  constructing these states: “the 
singly localized states can be characterized by their inability to trigger a coinci-
dence arrangement of  two counters separated by a longer distance than r” (Enss 
1975: 36). This means that any two one-particle systems would not overlap if  
two counters are enough separated; that is, if  they are separated by a certain dis-
tance that is longer than r. In this case, “an N-fold localized state will trigger a 
coincidence arrangement of  N-separated counters” (Enss 1975: 36). 



Reconsidering an Ontology of  Properties for Quantum Theories 

 

439 

It is then possible to consider Enss’ construction as an example of  a bundle 
theory of  particles, where particles are defined as a collection of  localized prop-
erties/observables (and hence states, namely particle states). This definition, 
however, is strictly dependent on the possibility to localize the properties of  a 
particle, and then on the results of  detection experiments. Enns proves some 
nice results in the context of  Haag-Ruelle scattering theory, where it is possible 
to give an algebraically precise definition of  the notion of  detection (in terms of  
the notion of  counter). Enns provides a clear formalism that links all the particle 
states to the measurement procedure, by showing how we can implement the 
process of  particle detection in the algebraic framework. His definition allows 
also to define the notion of  particle number in terms of  the triggering of  a set of  
widely separated counters—but only in the asymptotic limit (see also Rossanese 
2021). 

 
Conclusions 

We have discussed an interesting proposal for an ontology of  properties in the 
context of  QTs. First of  all, we have presented the original proposal of  Da Cos-
ta, Lombardi and Lastiri and we have then tried to generalize such ontology in 
the context of  QFT, and in particular in the context of  AQFT. Of course, in this 
paper I have just drawn the first lines of  a project that still shows the label “work 
in progress”. In any case, in this conclusive section, I would like to stress some 
points on which the future work has to be directed. 

We have defined a way to identify the relevant type-properties both in the 
context of  QM and of  QFT/AQFT. However, it is important to say something 
about the process of  measurement, which allows us to measure the actualised 
case-properties, that is, the actual values of  the properties that we have had iden-
tified thanks to choice of  the preferred context and to the superselection formal-
ism. Since it is important to provide a definite actualization dynamics, I think 
that it’s worth mentioning the status of  the measurement problem in the context 
QFT. Here I would take into account a schema for measurement that has been 
very recently proposed by Grimmer (2022). 

Grimmer (2022) offers an interesting analysis of  what he calls the pragmat-
ic QFT measurement problem. He offers a case-by-case analysis of  measure-
ment frameworks for quantum fields, which are mainly based on the Unruh-
DeWitt models. The basic idea is to define a measurement chain as a sequence 
of  interactions, which carries the measured information from the quantum sys-
tem to the record-keeping device. But, how to determine the end of  the so-called 
measurement chain? It is possible to determine a pragmatic Heisenberg-cut such 
that the system is no longer quantum after the cut. For instance, we can consider 
that the decoherence of  the system has occurred, or that the spontaneous wide-
scale recoherence is “practically” impossible. He gives also three examples of  
possible cut: (i) from quantum fields to non fields systems (“field cut”), (ii) from 
relativistic systems to non-relativistic systems (“relativistic cut”), (iii) from factor 
III algebras of  observables (the structure of  the algebra in AQFT) to factor I al-
gebras of  observables (“split property cut”). 

Grimmer analyses also Fewster and Verch (2020)’s model of  measurements 
as interactions in the specific context of  AQFT. Fewster and Verch propose a 
measurement framework in terms of  local interactions between AQFTs, where 
one acts as a local probe on the other. The localized dynamical coupling be-
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tween the system and the probe gives rise to a scattering morphism, that is, the 
probe acts on the system as a scattering process, which depends on the probe ob-
servable measured and on the initial state of  the probe. This measurement 
scheme allows to define the localized properties of  the system in terms of  the 
coupling regions between the system and the probe. 

To conclude, Da Costa, Lombardi and Lastiri (2013)’s seems to be an inter-
esting ontological option to interpret quantum theories and AQFT in particular. 
The fundamental ontology is then an ontology of  type-properties identified by 
the space-time symmetries and by the gauge symmetries of  the Hamitonian, to-
gether with the superselection formalism (for what concerns the specific case of  
AQFT). 

It is possible to recover the notion of  a particle as a bundle of  localized 
properties (see Dieks and Lubberdink 2011 and Lombardi and Dieks 2016 for 
QM, and Rossanese 2021 for AQFT). 

However, there is still work to do. On the one hand, it is first of  all im-
portant to further develop Ardenghi, Castagnino and Lombardi (2009b)’s analy-
sis to other gauge groups. On the other hand, the (pragmatical) measurement 
models of  QFT should be further investigated, both in the context of  standard 
formulation of  QFT and in the context of  AQFT.15 
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