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Abstract 
 
The scientific enterprise enriches the debate about models. In particular, in the field 
of structural biology, a new deep-learning neural network system called AlphaFold 
has been applied for many purposes. It allows us to predict a protein’s structure 
with high accuracy. I will present the system in light of the discussion of structure 
representation and argue for a specific kind of representational relation holding be-
tween the predicted model structure and its target-system. By doing so, I will criti-
cize the artifactual approach advanced by Knuuttila (2021) and present the features 
that characterize the predicted structures of AlphaFold as simulation models. 
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structure determination. 
 
 
 
 

1. Introduction 

The notion of model is one with a wide polysemy within the sciences and philos-
ophy. There is no unique conceptual framework and definition able to define all 
the models involved in scientific activities. There is no broad consensus on any 
unified account of models, as stated by Gelfert (2017), and it is considered an 
obvious consequence of this void to assume that “if all scientific models have 
something in common, this is not their nature but their function” (Contessa 2010: 
194). Moreover, if this characterization of models as functional entities is ac-
cepted, we must then specify how the models work as “carriers of scientific 
knowledge” (Ducheyne 2008: 120).  

One of the basic relationships between the model and its target-system (T) 
that has to hold, if the model must carry scientific knowledge, is the representa-
tion.1 My aim is not to advance a general theory of scientific representation, but 

 
1 See also Campbell 1920; Hesse 1966; Giere 1988; Morgan and Morrison 1999; Hughes 
1997; Teller 2001; Van Fraassen 2008; and Mitchell 2013. Concerning the issue of scien-
tific representations and realism, deeply tight, for a defense of scientific realism, see also 
Alai 2021a, 2021b, and 2023. 
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to propose a definition of the representational relationship between the specific 
kind of models produced by the deep-learning neural network system AlphaFold 
(AF), and their T. In §2 I present the main positions and definitions of models as 
functional entities. This, however, is mostly a study about the semantics of the 
representational relationship between AF and its T, for it is on the basis of that 
relation that such models are carriers of knowledge. Examples of this relationship 
regard models of actual T, such as the double-helix model of DNA, or the Bohr 
model of the atom, i.e. models that represent existing objects, and also models of 
potential (non-actual) T, as the examples of repressillators, synthetic oscillators 
and the ultra-Keynesian model analyzed by Knuuttila (2021), i.e. models that rep-
resent objects not existing in nature. According to the representationalist view what 
we learn from models presupposes a representational relation, while according to 
the inferentialist view, the representational feature of models is decoupled from 
their capacity of carrying knowledge. I claim that the representational relation 
presupposes the epistemic function of models of both actual and potential T. In 
§3 I discuss Knuuttila’s (2021) artefactual view of models. In §4 I argue that the 
example of models of potential T does not invalidate the role of the representa-
tional relationship, and in §5 I discuss the contest of Critical Assessment of pro-
tein Structure Prediction (CASP) and AF. In §6 AlphaFold models are interpreted 
as simulation models. To conclude, in (§7) I argue that they hold a kind of 
morphic representational relation with their T. The general aim of this paper is to 
give one of the first contributions to expand a philosophical account of deep-learn-
ing models in general and AF models in particular. 

 
2. A Taxonomy of Models 

Models have a central role in sciences. Even if there is no consensus about their 
nature and qualifications, scholars have elaborated on three main areas: seman-
tics, ontology, and epistemology of models. The first relates to what the models 
represent. The second concerns what the models are. The third focuses on the 
cognitive function modelers exploit for epistemological purposes. I will focus 
mainly on the first area, addressing namely the relation between the model and 
its target—system, specifically in the context of material, artifactual and simula-
tion models, as they are tackled by Rosenblueth and Wiener (1945), Knuuttila 
(2021) and Durán (2018, 2020). 

There are three main conceptions of the model–T relation: the similarity con-
ception, i.e., models and their T are to some extent similar; the structuralist con-
ception, i.e., models represent their T in virtue of a morphic relation between 
them; and the inferential conception, i.e., models as scientific representations 
have to be analyzed in terms of the inferential function.2 Each conception offers 
different answers to certain problems. Moreover, we can distinguish the instantial 
view and the representational view. According to the former, models instantiate 
the axioms of a theory, that is composed of linguistic and mathematical state-
ments. The representational view instead holds that it is rather the language that 
is connected with the model, while the model connects to the world “by way of 
similarity between a model and designated parts of the world” (Giere 1999: 56). 
In turn, the representational view has an informational and a pragmatic version. 

 
2 For a general discussion about the arguments and problems of the three accounts of sci-
entific representations, see Frigg and Nguyen 2021. 
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The former conceives representation as “an objective relation between the model 
and its target, which imbues the former with information about the latter” (Gelfert 
2017: 26). According to the latter, instead, it is not possible to “reduce the essen-
tially intentional judgments of representation-users to facts about the source and 
target object or systems and their properties” (Suarez 2004: 768).  

A further distinction can be drawn between substantive and deflationary ac-
counts of representation. Substantive accounts aim for a robust explanation of the 
function of a representation in terms of a fundamental relation between a model 
and its target. Deflationary accounts, instead, settle for a light characterization of 
the functional unit of representational devices. We will see that while Knuuttila’s 
proposal is pragmatic and deflationary, even though recognizes a representational 
function of models, the AF models are better interpreted by the representational, 
informational, and substantive view. 
 

3. The Artifactual Account of Models 

AF models, as representations of proteins, are a result of sophisticated techniques 
that make use of experimental data and abstract models. The 3d structures of pro-
teins predicted by AF recall the structure of material models of a DNA strand but 
with a digital suit. One of the first studies on the representational capacity of mod-
els has been made by Wiener and Rosenblueth (1945). They analyze the role of 
material models of phenomena in scientific research, stressing their advantage 
with respect to abstract models thanks to their representational features. They de-
scribe a material model as “the representation of a complex system by a system 
which is assumed simpler and which is also assumed to have some properties 
similar to those selected for study in the original complex system” (Rosenblueth 
and Wiener 1945: 317). The relation identified by the authors between the mate-
rial model and the original complex system can be seen as a case of similarity 
conception. This view then contrasts Suarez’s inferential conception. These mod-
els are intended to be approximations and “surrogates” (Rosenblueth and Wiener 
1945: 320) for the real facts under observation. But models can represent also facts 
not already present in reality. Indeed, Knuuttila is interested in developing an 
account of models consistent with the need, in some areas of inquiry as economics 
or synthetic biology, to build models of objects we do not find in nature or in 
society, i.e. models of invented objects. 

Knuuttila (2021) advances the artifactual account of models which fits well 
with the inferential account developed by Suárez (2004). She is interested in stat-
ing an alternative position to the received ones, both substantive and deflationary, 
pointing out that models can be carriers of scientific knowledge even if they do 
not represent the actual state of affairs in the world. She insists on the modal reach 
(Godfrey-Smith 2006) and the modal dimension of modeling (Le Bihan 2016), 
“which approaches models as purposefully constructed systems of interdepend-
encies designed to answer some pending scientific questions” (Knuuttila 2021:  
5). Models as epistemic artifacts function as “erotetic devices” (Knuuttila 2021: 
6). Such devices are artificial systems that deploy dependencies constrained to the 
aim of answering a specific scientific question, supported by theoretical, and em-
pirical considerations.  

Two examples are described, one of an ultra-Keynesian model as an example 
of an economic model that does not refer to a real T, and one of repressilators and 
synthetic oscillators in synthetic biology, that do not correspond to any existing 
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circuits, but are rather pictured to explore and test possible biological circuit de-
signs. To strengthen the cases, she distinguishes between representational modes 
and media, and also between internal and external representations. The represen-
tational modes are the many semiotic devices that express various meanings and 
contents, while the representational media are for example the ink on paper, dig-
ital computer, biological substrata, and what support the representations. Accord-
ing to Knuuttila (2021: 5) the same representational mode can be implemented in 
different media as the example of the synthetic repressilator and the electronic 
repressilator that instantiate both the same ring oscillator design, yet they are im-
plemented in different media “enabling different kinds of inferences” (Knuuttila 
2021: 5). Moreover, an internal representation concerns “how various kinds of 
sign-vehicles or representational devices are used to make meaning and convey 
content” (Knuuttila 2021: 5), i.e. for a material model of the atom, the material, 
the proportion, and in general the semiotic and semantic features of the model 
chosen to represent the specific object; by external representation, instead, she 
refers “to the relationship of a model to a real-world target system, the question 
on which the philosophical discussion has largely concentrated” (Knuuttila 2021: 
6). This distinction is particularly relevant for the definition of models as epis-
temic artifacts:  

 
Nevertheless, the fact that something may be internally represented within a model 
without necessarily representing the actual state of worldly affairs opens up the 
prospect of conceiving modeling as a practice of exploring the possible (Knuuttila 
2021: 7).  

 
The artifactual approach allows us to see biology as a discipline that not only 
focuses on natural organisms but includes also potential organisms (Elowitz and 
Lim, 2010, 889). So conceived, models are carriers of knowledge in virtue of their 
being erotetic devices and artifactual constructs useful to support surrogative in-
ferences about a potential target-system. In such a way, inferentialists would ar-
gue that their representational capacity is not relevant to their use in exploring the 
possible. 
 

4. Some Remarks on the Artifactual Account of Models 

The artifactual account stresses the pragmatic goal that directs the models' con-
struction and manipulation. It is to conceive models as tools for investigating spe-
cific phenomena, used to answer scientific questions, motivated by theoretical, 
and empirical tenets. According to Knuuttila (2021), their accomplishment relies 
on their modal function of exploring the spaces of possibilities and the main point 
is that their success needs not be grounded on the representational relation be-
tween the model and the target system. Thanks to the distinction between internal 
and external representations, Knuuttila safeguards a slightly deflationary defini-
tion of representation, which connects the artifactual models with a possible or-
ganism. Obviously, the correctness of models of merely possible T does not need 
the same kind of warrants as the models of real T. What does then warrant them? 
For Knuuttila it is simply their predictive success, without any need to invoke to 
any representational relation, yet it remains unanswered the question concerning 
what warrants the models' success. In other words, how can we probe the success 
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of a model of a potential target-system, without any reference to the representa-
tional relation between the model and the possible state of affairs? Knuuttila 
(2021) claims that it is still sufficient for a modal relation to justify the success of 
the artifactual models.  

We can reframe the modal feature of the relation between the models and 
the potential T as a predictive relation, i.e., a model would predict the possible 
state of affairs, if there were conditions such and such. One of the kinds of models 
so far used to explore the possible phenomena within a manifold scenario is the 
simulation model (SM). That is a model resulting from computational procedures 
able to predict or determine specific output with a given set of data. SM are helpful 
to study and predict complex scenarios and phenomena. They are implemented 
by a certain degree of idealization and can be used to study actual T (like biological 
systems, i.e. birds flocks, ant colonies, structure determination, enzyme kinetics 
and molecular dynamics) and potential T (like the behavior of mechanics and ar-
tifacts as airplanes, spacecrafts, biomedical robots, and also new proteins, new 
drugs and possible organisms). As it happens with imaginary economics, repressi-
lators and oscillators, from a set of data and techniques the respective models 
predict how the possible systems would act. To this extent, artifactual models are 
a kind of simulation model: though the examples are not strictly speaking com-
puter-based simulations, they simulate possible states of affairs, useful to predict 
how the system will work.  

I submit, however, that neither for simulation models nor for material mod-
els we can easily dismiss the representational link between the model and its T. 
In the case of artifactual models, it seems intuitive not to stress the representa-
tional link, because we weigh differently the conceptual role of an actual T and a 
potential T. However, if we want to gain epistemic access to the T in question, 
actual or potential, the model has to maintain a representational link with it. I call 
it the accessibility condition (AC): 

Accessibility condition: A model M of a target-system T is a functional carrier of 
knowledge in virtue of its capacity to give epistemic access to T through the 
representational relation established by the researchers between M and T. 

In the case of AF the output models of predicted proteins’ structures can be con-
ceived as a kind of artefactual model. Most AF models represent actual target 
systems, but they are also useful in the exploration of potential proteins. In that 
case, their success depends on their accurately representing the modal properties 
of proteins, i.e., what is actually possible or impossible for proteins. The discus-
sion on representation, then, is far from over, and a substantive view of represen-
tation is still in play. 
 

5. CASP and AlphaFold Protein Structure Prediction 

AF is a breakthrough deep-learning network AI system able to predict highly ac-
curate protein structures.3  Its computational power and sophisticated engineering 
let the DeepMind team, which worked on it, win the CASP 14 (Critical Assess-
ment of Protein Structure Prediction) on the 30th of November 2020. CASP 
started in 1994 and it is a biennial competitive appointment for biological re-
searchers working on protein structure prediction, aiming at solving the well-

 
3 All the predicted structure can be found on the AF open access database here: https://al-
phafold.ebi.ac.uk/ (last access November 2023). 

https://alphafold.ebi.ac.uk/
https://alphafold.ebi.ac.uk/
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known folding problem: How is it possible to fold a protein starting from its 
strains of amino acids? The founder and chair of CASP is John Moult, Professor 
of the Institute for Bioscience and Biotechnology Research and the Department 
of Cell Biology and Molecular Genetics at the University of Maryland. He de-
scribes CASP in this way: 
 

Computational biology differs from traditional science in that it takes place in a 
virtual world. Achieving rigor in a computational world which the scientist con-
trols is much harder than when dealing with the inflexible realities of the physical 
world. We introduced Community assessment experiments in computational bi-
ology to help achieve the same rigor as in real world science. CASP (Critical As-
sessment of Structure Prediction), the first framework for these experiments, is an 
organization that conducts double blind community wide experiments to deter-
mine the state of the art of computational methods for modeling protein structure 
from amino acid sequence and other information. CASP has now been running 
for over 20 years, with continuing high participation rates (over 100 groups around 
the world), and has been accompanied by an enormous improvement in the accu-
racy of the protein modeling methods. The CASP methodology has now been 
adopted in a wide range of computational biology areas, including protein-protein 
interactions, genome sequence annotation, biological networks, and protein func-
tion annotation (Moult 2022). 

 
The first lines make a sharp distinction between the rigor achieved in the real-
world sciences and the one obtained in a computational world. I am interested in 
showing the philosophical relevance of the effort to make the two methodologies 
meet and enhance each other. Two questions. Why do the real-world sciences 
working on protein folding need such an upgrade? Moreover, why is it so im-
portant to solve the folding problem? “We have discovered more about the world 
than any other civilization before us. But we have been stuck on this one problem. 
How the proteins fold up. How the protein goes from a string of amino acids to a 
compact shape that acts as a machine and drives life?”,4 says John Moult (2021), 
filmed in AlphaFold: The making of a scientific breakthrough, the inside story of Deep-
Mind5 research team who created AF. This is indeed the folding problem. Solving 
it means making huge steps in molecular biology and consequently in many other 
biological fields. DeepMind team states that the research program that leads to 
AF and similar systems is crucial for the development of the life sciences. Proteins 
are stunning biological nano-machines, whose understanding will take us to un-
veil how they work and interact with other molecules. They are polymers in 
which the 20 natural amino acids are connected by amino bonds. They are poly-
mers in which the 20 natural amino acids are connected by amino bonds. They 
are synthesized by the ribosomes, which are complex molecular machines present 
in all living cells, measuring around 30 nm. Ribosomes compose amino acids to-
gether in the specific order defined by messenger RNA molecules. 

 
4 John Moult was interviewed in AlphaFold: The making of a scientific breakthrough, video interview 
about the AlphaFold breakthrough: https://www.youtube.com/watch?v=gg7WjuFs8F4 (last 
access November 2023). 
5 AlphaFold thematic section on DeepMind website: https://www.deepmind.com/re-
search/highlighted-research/alphafold (last access November 2023). 

https://www.youtube.com/watch?v=gg7WjuFs8F4
https://www.deepmind.com/research/highlighted-research/alphafold
https://www.deepmind.com/research/highlighted-research/alphafold
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AF team trained this system6 on publicly available data consisting of around 
170.000 protein structures taken from the protein data bank (PDB),7 together 
with large databases containing protein sequences of unknown structure. Thanks 
to the genomics revolution we can read amino acid sequences of proteins at mas-
sive scale; in fact, the Universal Protein database (UniProt) contains 180 million 
protein sequences. The building blocks of proteins are amino acids, small molec-
ular compounds with unique features composed of between 10 and 20 atoms. In 
ordinary biology we find 20 standard types of amino acids floating within the 
cytoplasm of the cells. They connect to a piece of transfer RNA that matches with 
the three genetic sequences of the genetic code of the RNA messenger. Ribosomes 
then read the three-basis instructions of the RNA messenger and start building a 
chain of amino acids that goes out from the ribosome. As the chain of amino acids 
exits the ribosome, released in the cytoplasm, it is surrounded by water molecules 
and subject to the interaction of physical forces that make the chain fold up on 
itself and form the complex 3d structure we call a protein. All this process is called 
translation because the molecular mechanisms manage to produce a fully opera-
tive protein with proper functions by translating a piece of the genetic code. The 
unique shape of a protein is defined by its amino acid sequence and its shape is 
the key to unlock its functions. Determining the 3d structure of a protein is indeed 
necessary to understand its functions. Proteins seem like pieces of a puzzle, but 
with a dynamic shape which can change according to the bonds they make with 
other interacting molecules. Nonetheless, a protein would bond with some mole-
cules and not others. There are specific combinations of proteins and molecules. 
By understanding the protein shape and the occurring molecular interactions, sci-
entists can design vaccines, new drugs and functional structures for ecological 
purposes: “Among the undetermined proteins may be some with new and excit-
ing functions and—just as a telescope helps us see deeper into the unknown uni-
verse—techniques like AlphaFold may help us find them” (The AlphaFold Team 
2020). 

Proteins are fundamental for most living beings, and enhancing their under-
standing through computational allows us to tackle diseases, discover new medi-
cines and disclose the enigmas of life in a faster and cheaper way than traditional 
research on existing proteins. Thanks to painstaking experimental effort, real-
world sciences have determined before the release of AF the 3d structures of ap-
proximately 100.000 unique proteins (Thompson, Yeates and Rodriguez 2020; 
Bai, McMullan and Scheres 2015; Jaskolski, Dauter and Wlodawer 2014; 
Wüthrich 2001). Using the experimental methodology scientists had at their dis-
posal until now, it could take from months to years and a lot of financial resources 
to determine a single protein structure. Computational methodologies are in fact 
needed to reduce this gap and to “enable large-scale structural bioinformatics” 
(Jumper, Evans, Pritzel et al. 2021a: 1). That is why CASP has been promoted 
within the biological fields, with the aim to push researcher communities to solve 
the protein folding problem, that has been an open research problem since when, 

 
6 It makes use of 16 TPUv3s (which is 128 TPUv3 cores or roughly equivalent to ~100-200 
GPUs) run over a few weeks, a relatively modest amount of compute in the context of 
most large state-of-the-art models used in machine learning today. See Jumper, Evans, 
Pritzel et al. 2021a. 
7 Protein Data Bank website: https://pdb101.rcsb.org/ (last access November 2023). 

https://www.rcsb.org/
https://www.uniprot.org/
https://cloud.google.com/tpu/docs/types-zones
https://pdb101.rcsb.org/
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around 1960, the first atomic-resolution protein structures were proposed (Ken-
drew 1961; Pauling and Corey 1951; Pauling, Corey and Branson 1951), while 
the first protein structures detected presented unpredicted irregularities. It was the 
case of globin structures, a clade of globular proteins containing heme, a precursor 
to hemoglobin (6,5 nm), involved in binding, and transporting oxygen. Globin 
proteins contain the globin fold, which is a series of eight α-helices packed to-
gether in irregular ways. Since the 60’s the folding problem concerns three differ-
ent problems (Dill, Ozkan, Shell and Weikl 2008): 

1) The folding code: the thermodynamic question of what balance of intera-
tomic forces dictates the structure of the protein, for a given amino acid 
sequence;  

2) Protein structure prediction: the computational problem of how to predict 
a protein’s native structure from its amino acid sequence; 

3) The folding process: the kinetics question of what routes or pathways some 
proteins use to fold so quickly. We focus here only on soluble proteins and 
not on fibrous or membrane proteins. 

The main CASP evaluation follows the criteria of comparison between the pre-
dicted model α-carbon positions and those in the real-world target structure. The 
visualisation of cumulative plots of distances between pairs of α-carbon in the 
model and target structure positioning is used to evaluate the prediction against 
the experimental result, such as shown in the two figures aligning computational 
prediction with the experimental result. The real structure is already known by 
the evaluator so that the CASP examination can estimate the accuracy of the pre-
dictive model. To each prediction is assigned a numerical score GDT-TS (Global 
Distance Test—Total Score) specifying the percentage of modeling residues8 in 
the model with respect to the target. 

 

The CASP campaign evaluation relies basically on the issues of 1) The folding 
code, 2) Protein structure prediction, and 3) The folding process, although the 

 
8 The amino acids in a polypeptide chain are linked by peptide bonds. Once linked in the 
protein chain, an individual amino acid is called a residue, and the linked series of carbon, 
nitrogen, and oxygen atoms are known as the main chain or protein backbone. 

Figure 1: Two examples of protein targets in the free modelling category. 
AlphaFold predicts highly accurate structures measured against experi-
mental result (The AlphaFold Team 2020). 
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results are carried out in many prediction categories: tertiary structure prediction, 
residue-residue contact prediction, disordered regions prediction, function pre-
diction, model quality assessment, model refinement, and high-accuracy tem-
plate-based prediction. Tertiary structure prediction is then divided into three sub-
categories: homology modeling; fold recognition; and de novo structure prediction 
(New Fold). All these conditions form what we can call the accuracy qualification 
(AQ). The higher the GDT scores, the better the AQ of the predictions, and the 
higher the AQ, the nearer the model to the real shape of the protein. Another 
consequence of the AQ is that higher scores correspond to higher amounts of cor-
rect information transmitted from T to M, and from M to the modelers. 

 Since 2018 CASP team made some improvements, but the big leap was be-
tween AlphaFold 1 (AF1), the ancestor, and its successor, AlphaFold 2 (AF2), 
whose score, according to Moult, was around 90 GDT on 100 points scale pre-
diction accuracy. DeepMind developed new deep learning architectures to im-
prove the research methods for CASP14, which led to a high level of accuracy. 
These methods are inspired by the research areas of biology, physics, and machine 
learning and by the studies many scientists enhanced during the years on the pro-
tein folding problem. The AF2 system is described as a neural network-based 
model (Jumper, Evans, Pritzel et al. 2021a). It is important to note that it is de-
scribed as an AI system coherent with the wider project of Demis Hassabis, CEO 
and co-founder of DeepMind, of making further steps in General AI. The whole 
AF architecture learns from the data and elaborates the 3d structure prediction of 
the folded protein. We can think of a folded protein as a spatial graph, a spatial 
presentation of a graph in the 3-dimensional Euclidean space R3, in which resi-
dues are the nodes and edges link the closely related residues (Jumper, Evans, 
Pritzel et al. 2021a). The graph matters to understand the proteins physical inter-
actions and their evolution. For the second version of AF2, the team created an 
attention-based neural network system, trained end-to-end, that attempts to inter-
pret the structure of this graph while reasoning over the implicit graph that it’s 
building (Jumper, Evans, Pritzel et al. 2021a). By process iteration, AF2 produces 
accurate predictions of the underlying physical structure of the protein in days-
time. Moreover, the system can predict the reliability of parts of each predicted 
protein structure using an internal confidence measure. The following is the AF1 
architecture that provided important results in CASP13, beating the median free-
modeling accuracy of other systems. 

Fig. 2: An overview of the main neural network model architecture. The 
model operates over evolutionarily related protein sequences as well as 
amino acid residue pairs, iteratively passing information between both 
representations to generate a structure (The AlphaFold Team 2020). 

https://en.wikipedia.org/wiki/Tertiary_structure
https://en.wikipedia.org/wiki/Intrinsically_disordered_proteins
https://en.wikipedia.org/wiki/Function_(biology)
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AF1 has a straightforward architecture (Senior, Evans, Jumper et al. 2020). 
It begins with the amino acids sequence for which we are searching the protein 
structure. The first step concerns a data extraction move from the known data-
base, in order to find similar protein sequences. The first task of the neural net-
work is to find similar sequences, and it is called Multiple Sequence Alignment 
(MSA). The protein structure is responsible for its function, and we know that 
evolution carved the organisms in such a way that only some structures passed 
the survival threshold. Indeed, in different organisms during evolution a protein 
structure is more stable over time than the genetic sequence encoding that partic-
ular protein the genetic mutations that passed the evolutionary test are those that 
did not affect the protein structures. Comparing evolutionary-related protein se-
quences, whose 3d form should share some similarities, is what MSA does: scroll-
ing the database to find amino acid sequence matches in the animal kingdom. To 
sum up, in AF1, 3 main steps need to aim at structure prediction: 

1) AF1 collects the MSA features;  
2) it predicts then the distogram using a residual neural-network;  
3) it optimizes the protein backbone using the predicted distogram in combi-

nation with simulated physical forces. The output is the 3d predicted pro-
tein structure. 

As the aforementioned system, AF2 presents three main blocks:  

1) A pre-processing stage where the input sequence is used to query additional 
information about the initial sequence from databases;  

2) The information is then mapped into an MSA and pair representation, which 
are refined by the Evoformer, a 48-layer deep transformer-like network that 
uses attention mechanisms to update MSA and pair representations;  

3) The structure module, a recurrent network, processes the Evoformer output, 
which transforms the abstract representations of the Evoformer into concrete 
3d coordinates of the protein geometry. 

 

 

 

Fig. 3: Model architecture. Arrows show the information flow among the 
various components described in this paper. Array shapes are shown in 
parentheses with s, number of sequences (Nseq in the main text); r, num-
ber of residues (Nres in the main text); c, number of channels (Jumper, 
Evans, Pritzel et al. 2021a). 
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Just to cite the improvement of the new architecture of AF2, it allows for jointly 
embedding of multiple sequence alignments (MSAs) and pairwise features. More-
over, AF2 has a new representation output and an associated loss that together 
allow for end-to-structure prediction. 
The AF research teams does not submit that the system is capable of revealing 
underlying laws regulating protein folding. AF, however, seems to have reached 
important results concerning some kinds of proteins, especially those based on a 
strain of between 100 and 200 amino acids. Moreover, albeit the neural networks 
system distances the empirical link of evidence gathered from experimental data 
in the genomic database of proteins, it has the computational power to disclose 
the structure of the simulated object. In future, it may be capable of finding com-
mon patterns between the structures predicted. In any case, from a philosophical 
perspective, it is important to ask whether this kind of AI system can assist re-
searchers in unveiling recurrent structures that could be defined as the laws gov-
erning protein folding. This discovery could improve even better the system solv-
ing the folding problem. 
 

6. AlphaFold as a Simulation Model 

In the last years, as the use of deep-learning neural networks has become perva-
sive in engineering and scientific areas,9 scholars have focused correspondingly 
on the diffusion of simulation models as tools and outputs of neural network sys-
tems. What are simulation models10 is then a crucial issue in the epistemology of 
models and the general philosophy of sciences. 

A simulation model (SM) is a representation of a real or possible system, 
interacting with a determined environment, supported by computation tech-
niques and expressed through visualization tools. It is a powerful instrument to 
represent, observe, study and manipulate to a higher degree of realism complex 
phenomena within a system. I submit that a model produced by AF is a kind of 
SM endowed with a degree of accuracy that was not available in the past, there-
fore improving the representational link between M and the related T. I submit 
that AF is a system architecture that produces SM of proteins’ structures. We can 
divide AlphaFold into three main sectors: 1) AF as a complex neural-network 
system as a whole architecture; 2) AF sector sequences of algorithmic processing, 
the main blocks of the architecture; 3) AF’s protein structure model as the output 
of the system.  

As we know, the first stages of the system have to do with the analysis of the 
protein structure data contained in the database. In fact, in CASP the accuracy of 
the predicted structure is measured through the structure model obtained via ex-
perimental methods through X-ray crystallography and NMR spectroscopy. I 
claim that in each sector AF works as a kind of SM. According to CASP14 there 
are three relations to be noted:  

1) The first between the real target system T and the experimental model, i.e. 
the relation between the real receptor-binding protein adhesin (Fig. 1) and the 
model resulting from the use of X-ray crystallography and NMR spectroscopy; 

 
9 See also Mitchell 2019; and Wooldridge 2021. 
10 See also Durán 2018, 2020; and Paronitti 2008, 2009. 
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2) The second between the experimental model and the simulation model AF, 
namely what is pictured in Fig1, the relation between the model obtained through 
experimental methods and the simulation model produced by AF;  

3) The third between AF, the whole system architecture and the real target-
system T, i.e. the real adhesin protein. The experimental and simulation success 
of these models is due to the relation they have with T. In the first case, the rela-
tion is obtained through experimental work which preserves the empirical link 
between observation and data manipulation. In the second case, the two different 
kinds of models are both successful representations of T, even though the simula-
tion success entails a higher abstraction than the empirical link the experimental 
model holds in the first place. In the third case, AF as a whole architecture and 
the target system are not linked by an empirical relation, in so far as there is no 
direct observational contact as in the case of X-ray crystallography or NMR spec-
troscopy between the enquirer and the T. They are connected through the data 
manipulation and the simulation process binding the initial data, with the struc-
ture model in output. 

Given the digital, computational, and algorithmic nature of the AF system, 
we can interpret it as an architecture producing simulation model (SM). There 
are mainly two types of simulation models: 1) SM is conceived as an implemen-
tation of models already existing; for example, aerospace engineers use SM of 
planes to test models they already have under specific circumstances like mechan-
ical stress and weather conditions; 2) CS as models which have their own com-
plexity and autonomy, the study of which is enhanced focusing on computer sci-
ence and software engineering.11 According to Durán (2021: 317), a simulation 
model (SM) is a “rich and complex structure that departs in important ways from 
standard models used in scientific research”. Furthermore, Durán (2021) argues 
that the construction of the SM is possible because of a new methodology that is 
in place. He calls it recasting, and it consists of clustering a multiplicity of models 
into one fully computational SM. Think of it as the mashing-up of different mod-
els, also theoretical and mathematical, that could be implemented through deep-
learning networks, with the specific aim to predict, in this case, the folding of 
proteins. To refine the terminology for the purposes of AF, we can call the meth-
odology in place reshaping. AF begins with a set of data with empirical and exper-
imental information, then through the intervention of programmers in adjusting 
the learning bias with respect to the desired output, using different integration 
modules, idealisations, and reshaping the data representation with the multiple 
sequence alignments MSA, according to cycles of implementation and integra-
tion, through the Evoformer and the Structure Module, we gain the visualization 
of the 3d geometry of the folding shape of the protein. 

Not all the SM produced by AF are accurate representations of their T, espe-
cially the complex proteins are very hard to predict through the AF architecture 
as it is. Moreover, AF does not predict important aspects of protein structures as 
many ligands, metal ions and cofactors. Furthermore, the main limitation of AF 
is that the system predicts only a single state of the protein, and it is also hard to 
tell which state of the protein will be represented by the model (Perrakis and 
Sixma 2021). In fact, AF produces indeed SM with specific aims and empirical 
and theoretical assumptions and limitations, that must pass the abovementioned 
accessibility condition AC. Moreover, given the accuracy standard gained from the 

 
11 See also Symons and Alvarado 2019; Durán 2018; and Boyer-Kassem 2014. 
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experimental data, we can draw another requirement to be satisfied, the correct-
ness condition (CC) for the proteins models: 

Correctness condition: SM represents correctly iff the accuracy qualification 
(AQ) is satisfied. 

The AQ developed by CASP is a threshold for the correctness of the representa-
tion of SM. I take it as the level of approximation to reality the representation 
gains from the system through the work of modelers.  

To conclude, AF consists not only of a complex and sophisticated computa-
tional implementation of the experimental models of proteins’ structure determi-
nation, but it is a simulation model which is already changing the scenario of the 
computational and structure biology research areas. 
 

7. Structure and Representation 

I have advanced an interpretation of AF models as simulations. Thanks to the 
simulation power, modelers have greatly improved the representational capacity 
of models. Now I suggest a definition of the relation, refined through simulation, 
holding between the AF models and the objects they aim to represent: 

Structural Dynamic Approximate Isomorphism: a mapping that gathers through 
simulation even more information about the dynamic structure of T, so that 
the two systems (the model and T) approximately share the main structural 
features. 

This definition pictures the ideal isomorphism between the model and the real 
protein which AF assumes as an implicit presupposition. It is a form of mapping 
since AF aims to visualize the shape of the protein as an image which can be 
navigated and observed in many aspects on a computer. The two systems should 
share the same features, represented one-to-one in the model: the individual fold-
ing units (domains), dynamic movements, contact matrix, ligands, and each pol-
ypeptide chain, and monomers, involved in multimers. Moreover, the two sys-
tems should share the same features under the same dynamics, i.e. the interac-
tions of the domains in T should correspond in the mapping of the model. Given 
the limitation of AF, the definition assumes that the simulation model could be 
refined through time thanks to more and better information about the relevant 
features of the real proteins. The isomorphism between the two systems should 
regard the geometry as the information detected regarding the ligands and the 
folding units. In the case of protein folding the isomorphic relation is fundamental 
between the two systems, in so far as the protein shape is responsible for its func-
tion. 

Why should the isomorphism be dynamic? One of the most important limita-
tions of AF is that it predicts only a single state of a protein, but the aim of the AF 
researcher is to overcome this boundary. AF models are the peak of an important 
history of views about, and scientific representation of, proteins. In the last cen-
tury structure biologists12 shifted from the static view, according to which the pro-
tein models represented rigid structures, to the dynamic view: 
 

 
12 For a review of the history of structural biology, from the static to dynamic view, and a 
philosophical account of representation and explanation in the study of protein in struc-
tural biology, see Neal (2021). 
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The study of how proteins serve the needs of a living organism is a curious case in 
which a method that yielded dramatic advances also led to a misconception. The 
method is X-ray crystallography […] The intrinsic beauty and the remarkable de-
tail of the structures obtained from X-ray crystallography resulted in the view that 
proteins are rigid. This created the misconception, namely that the atoms in a pro-
tein are fixed in position (Karplus and McCammon 1986: 42). 

 
The dynamic turn in protein representations owes a lot to thermodynamics. In 
fact, the dynamic analysis treats proteins as thermodynamic systems. The shift 
brought changes also to the structural concept. The old structural concept, coher-
ent with the static view, is committed to the beliefs 1) that every protein has a 
rigid and static 3d structure and 2) that the protein structure alone determines 
protein function. The new dynamic concept of protein structure drops these com-
mitments and adopts an inferential stance toward the proteins’ structures, which 
are taken to be flexible, dynamic and constantly under structural fluctuations and 
mutations according to the environment and occurrent phenomena. Advocates of 
the dynamic concept are committed to the belief that dynamics and structures are 
relevant determinants of protein behavior and function (Neal 2021). The support-
ers of the dynamic concept suggest a wide range of experimental, theoretical and 
computational strategies to test the dynamic properties of proteins. AlphaFold 
researchers support the dynamic view of protein structure, well represented by 
accurate prediction models. 

The motivation of AF is that biological research will be aided by the availa-
bility of an open-source determination structure database. The assumption under-
lying AF system and fostering this motivation is that simulation model structures 
entail an isomorphic relation with the target-protein. The protein may be in the 
real world, or a possible protein, or a protein mutation, whose structure is to be 
explored, in order to accomplish some specific functions, as in the case of PET 
depolymerization (Lu, Diaz, Czarnecki et al. 2022). AF model assumes that the 
dynamic view can be fostered through computational methods via deep-learning 
network architecture. 

The AF system architecture is built to replicate the shape of the proteins ac-
cording to their geometric features. The SM is apt to replace the representation of 
a protein given by the experimental procedures. The accuracy of the AF models 
is then grounded on the approximation to the structure of the real protein or to 
the functional structure of potential proteins. What best captures the conservation 
of information and geometric features between M and T is the notion of isomor-
phism. Related to protein structure prediction or drug discovery, AF researchers 
are therefore committed to a kind of isomorphism. On its basis, we can then de-
fine the representation relation: 

Representation: A scientific model M represents a T, which may be actual or 
potential, iff the dynamic structure of the model is approximately isomor-
phic to the structure of the T. 

This kind of definition avoids some problems described in the structuralist con-
ception of scientific representations.13 According to Suárez (2003) and Downes 
(2009) isomorphism cannot ground the representation relation, because the former is 
characterized as reflexive and symmetrical, while the latter is not. Frigg and Nguyen 
(2017: 55) coin the requirement of directionality to account for this asymmetry. To 

 
13 See also Gelfert 2017; Frigg and Nguyen 2021. 
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answer these critics, let us recall that AF modelers do not aim at ideal models of pro-
teins. The 100% GDT score is an ideal limit of research output, while the condition 
to be obtained is the standard of accuracy, i.e. AF models are accurate in so far as 
they represent their T, as an experimental representation of them would have 
done. The accuracy of AF models relies on the training the networks have got 
from the experimental data gathered. The isomorphic relation is approximate in 
the sense that the relation safeguards the correctness condition (CC).  

Moreover, since the function of a protein depends on its folding, in the dy-
namics of interaction with the phenomena and molecules in the environment, 
there is a fundamental connection between the information it carries and the 
structure it takes once folded. Modeling such a dynamic structure allows us to 
understand the function of the protein. The isomorphism between the target-struc-
ture and the simulated or predicted structure is crucial to study, manipulate, and 
explore actual and possible functions of proteins. In so far as we need models to 
offer information about the target, the directionality of representation is then from 
model to target. It is indeed the asymmetry of the M-T relation that assures the 
accessibility condition (AC) that accurate models accommodate. 

The isomorphic picture of the representational relation between the AF mod-
els and their T is one to take at face value if we want to develop a philosophical 
account of a breakthrough scientific advance such as AlphaFold.14 
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